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Abstract

A systematic Fourier accuracy analysis is performed to examine the numerical diffusion inherent in a Godunov-type
reconstruction, including both the reconstruction of the solution within each cell and the computation of the derivative
terms of the reconstruction. It is found that compared with the more popular fifth-order polynomial fit of the interface
values, a piecewise quadratic reconstruction of the solution with more accurate slope and curvature, especially those com-
puted by compact difference schemes, is much less dissipative. Therefore, further given in the paper is a general framework
to make a piecewise quadratic reconstruction free of numerical oscillations around the shocks. The improved accuracy and
robustness of the resulting Godunov-type schemes for simulation of vortex-dominated flows are demonstrated with the
numerical results of several carefully selected cases, including vortex convection and shock–vortex interaction.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Compared with full-potential methods, Euler/Navier–Stokes analyses include two extra physical mecha-
nisms. They are theoretically able to correctly capture strong shocks and convect vorticity. However, this is
not necessarily true for their numerical solutions. On the one hand, great progress has been made in the com-
putational fluid dynamics (CFD) community to correctly capture strong shocks numerically. As a result, the
application of Euler/Navier–Stokes analyses in the fixed-wing industry has become relatively mature. Among
those so-called shock-capturing schemes, Godunov-type schemes are more popular due to their robustness.
On the other hand, because of large numerical diffusion contained in such upwind schemes and insufficient
grid resolution in the vortex region, it is a common experience that the predicted vortex structure is diffused
very rapidly as the vortex is convected in the flowfield (e.g. [1–3]). This situation as well as high computational
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intensity have severely hampered the widespread application of Euler/Navier–Stokes analyses in the rotary-
wing industry.

Accurate Euler/Navier–Stokes simulation of rotary-wing aerodynamics and acoustics is much more chal-
lenging than its fixed-wing counterpart. This is because the strong tip vortices trailing from the blades stay
close to the rotor disk, and thereby effectively change the angles of attack of the blades and the blade loading
by producing a complicated three-dimensional-induced velocity field there. In a low-speed descending forward
flight, it is even possible for these tip vortices to generate strong interactions with the rotor blades, resulting in
vibration and BVI (Blade–Vortex Interaction) noise. As a result, a rotary-wing Euler/Navier–Stokes solver is
required to not only correctly capture strong shocks but also accurately preserve the tip vortex structure. The
accuracy deficiency of current rotor Euler/Navier–Stokes codes for vortex preservation has led previous rotor
Euler/Navier–Stokes researches to focus on coupling Euler/Navier–Stokes solutions with a separate wake
model by the surface transpiration (e.g. [4–7]), field velocity (e.g. [8]), or perturbation (e.g., [9]) methods.
Therefore, the advantages of Euler/Navier–Stokes analyses are not fully utilized.

There are several approaches for improving the accuracy of Euler/Navier–Stokes analyses: h(mesh size)-,
p(the order of the interpolant)-, hp-, and r(mesh redistribution)-refinement. h-methods improve the accuracy
by mesh refinement with a fixed, usually low-order, interpolant, p-methods by increasing the order of the inter-
polant with a fixed mesh size, hp-methods by combining h- and p-refinement, and r-methods by mesh move-
ment. Traditionally, finite difference schemes are designed for h-refinement, where the order of accuracy, i.e.,
the order of truncation errors, plays a key role, representing the convergence rate of the numerical solutions
with mesh refinement. However, h-refinement is not suitable for some applications like direct numerical sim-
ulation (DNS)/large-eddy simulation (LES) of turbulence, in which the largest mesh size allowed by computer
memory is usually already used. In those situations, a p-refinement approach is required where instead of the
order of accuracy, the resolution capability of a numerical scheme becomes a more appropriate measure of
accuracy [10], measured by the range of the scales which the numerical scheme can well resolve. Recently,
a new family of finite difference schemes has been developed to improve the resolution capability of the tra-
ditional finite difference schemes at the cost of their order of accuracy (e.g. [10–14]). There is also a resurgence
of using high-order compact differences instead of divided differences to achieve spectral-like resolution (e.g.
[11,14–17]). In this paper, we will continue the above efforts and search for an effective way to improve the
resolution capability of the Godunov-type schemes and thus reduce their numerical diffusion. As will be
shown later, this p-refinement approach is more efficient than h-refinement approach for improving the sim-
ulation of vortex-dominated flows.

Many current Godunov-type scheme-based research and production CFD codes, e.g., CFL3D [18], OVER-

FLOW [19], and TURNS [20], follow van Leer�s MUSCL approach [21] with a third-order polynomial fit of
the interface values to compute the inviscid fluxes in the smooth regions. However, this third-order spatial
discretization has been found too dissipative for simulation of vortex-dominated flows [1,3,22]. A fifth-order
polynomial fit has been suggested to replace this more traditional third-order spatial discretization for better
vortex preservation (e.g. [22–25]). In fact, this fifth-order polynomial fit has also been used in many monotone
schemes (e.g. [26,27]) for the smooth regions to achieve higher accuracy over theMUSCL approach. Although
large accuracy improvement has been observed with the use of this fifth-order spatial discretization (e.g.
[22–25]), there is still a large room left for further accuracy improvement [28]. In order to search for a more
effective approach for improvement of the resolution capability of the Godunov-type schemes and thus reduc-
tion of their numerical diffusion, a systematic Fourier accuracy analysis is performed in this paper to investi-
gate the spectral distribution of numerical errors inherent in a Godunov-type reconstruction, including both
the reconstruction of the solution within each cell and the computation of the derivative terms of the
reconstruction.

The paper is organized as follows. First, the classical Fourier accuracy analysis is performed in Section 2 to
investigate the numerical errors inherent in various Godunov-type reconstructions. It is found that compared
with using the more popular fifth-order polynomial fit of the interface values, the use of a piecewise quadratic
reconstruction of the solution with more accurate slope and curvature, especially those computed with
compact differences, is much more effective for reduction of numerical diffusion. Therefore, further given in
Section 3 is a general framework to make a piecewise quadratic reconstruction free of numerical oscillations.
Finally, Section 4 presents the numerical results of several carefully selected cases, including both vortex
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convection and shock–vortex interaction, to demonstrate the enhanced capability of the improved Godunov-
type schemes for simulation of vortex-dominated flows. It is noteworthy that these improved Godunov-type
schemes can also be used to improve DNS/LES of turbulence and computational acoustics.

2. Spectral analysis of reconstruction errors

Given the one-dimensional conservation law
ut þ f ðuÞx ¼ 0 ð1Þ

a Godunov-type scheme first integrates Eq. (1) over the interval [xj�1/2,xj + 1/2]
ð�ujÞt þ
f ðujþ1=2Þ � f ðuj�1=2Þ

Dx
¼ 0; ð2Þ
with �ujðtÞ ¼ 1
Dx

R xjþ1=2

xj�1=2
uðx; tÞ dx and then determines the numerical fluxes at the interfaces, f(uj±1/2), in two

stages. The first is a projection (reconstruction) stage, in which the left/right-hand-side values of the state vari-
ables at the interfaces, uLj�1=2 and uRj�1=2, are computed through the interpolation of �ui ði ¼ j� l; . . . ; jþ rÞ. The
second stage is an evolution (upwind) stage, in which f(uj±1/2) are computed from the given uLj�1=2 and uRj�1=2 by
locally solving a Riemann problem at the interfaces xj±1/2. The focus of this paper is on the first stage. We will
discuss how to effectively reduce the numerical diffusion contained in such types of upwind schemes by care-
fully designing a reconstruction of the solution within each cell to accurately compute uLj�1=2 and uRj�1=2. The
classical Fourier accuracy analysis of various Godunov-type reconstructions will be performed for the linear
case of f(u) = u.

If u(x,t) = T(t) eIkx, where I ¼
ffiffiffiffiffiffiffi
�1

p
and k is called the wave number, then
�uj ¼
sinð/=2Þ
/=2

eIkxjT ðtÞ ð3Þ
and the analytical solution of ðuxÞj is
ðuxÞj ¼ I � 2 sinð/=2Þ e
Ikxj

Dx
T ðtÞ; ð4Þ
where / = kDx is called the phase angle. On the other hand, the numerical approximation of ðuxÞj given by a
Godunov-type scheme is found as
ðuxÞj ¼
ujþ1=2 � uj�1=2

Dx
¼ fAð/Þ þ I � P ð/Þg e

Ikxj

Dx
T ðtÞ. ð5Þ
Therefore, the numerical dissipative (amplitude) error of the approximation is defined as
ea ¼ Að/Þ ð6Þ

and the dispersion (phase) error is defined as
ep ¼ P ð/Þ � 2 sinð/=2Þ. ð7Þ
2.1. Piecewise linear reconstruction

According to [29], most Godunov-type schemes use a piecewise linear reconstruction of the solution
RjðxÞ ¼ �uj þ �sjðx� xjÞ ðxj�1=2 < x < xjþ1=2Þ ð8Þ
and improve the accuracy of the schemes by using a higher-order polynomial interpolation to compute the
cell-averaged slope �sj. If the slope �sj in (8) is computed by a central divided difference scheme
�sj ¼
1

Dx

X
l

clð�ujþl � �uj�lÞ ð9Þ
then the numerical dissipative (amplitude) error of (5) is



-0

0

0

1

A
m

p
lit

u
d

e
 e

rr
o

r

a

662 L. Tang, J.D. Baeder / Journal of Computational Physics 213 (2006) 659–675
ea ¼
sinð/=2Þ
/=2

1� cos/� sin/
X
l

cl sin l/

 !
ð10Þ
and the dispersion (phase) error is
ep ¼
sinð/=2Þ
/=2

sin/þ ð1� cos/Þ
X
l

cl sin l/� /

" #
. ð11Þ
Fig. 1 presents the numerical dissipative and dispersion errors of (5) based on the piecewise linear recon-
struction of (8) with the second-, fourth- and sixth-order central divided difference computed slope �sj, labeled
as L2d, L4d and L6d, respectively. Here L stands for a piecewise Linear reconstruction, and 2d, 4d, and 6d
represent second-, fourth- and sixth-order divided differences, respectively. It is found that all three reconstruc-
tions produce positive amplitude error (numerical damping) in the whole frequency domain, increasing with
the frequency of a solution except near the high-frequency end. The use of a fourth-order divided difference
instead of a second-order one to compute the slope of the reconstruction can slightly reduce the initial
increment of numerical diffusion with frequency and the further accuracy improvement of the computed slope
from fourth-order to sixth-order produces even much smaller reduction of numerical diffusion. Moreover,
using a higher-order accurate slope is found to produce larger positive (leading) phase error in the median-
frequency range but smaller negative (lag) phase error in the high-frequency range. Globally speaking, the
accuracy of the three reconstructions are in the same level and severely limited by the piecewise linear
reconstruction of (8).

2.2. Piecewise quadratic reconstruction

Let us further consider a piecewise quadratic reconstruction
RjðxÞ ¼ �uj þ �sjðx� xjÞ þ
�rj

2
ðx� xjÞ2 �

Dx2

12

� �
ðxj�1=2 < x < xjþ1=2Þ. ð12Þ
Here �sj and �rj are the cell-averaged values of the slope and curvature at xj, respectively. By taking the same
Fourier accuracy analysis as the one for a piecewise linear reconstruction, the numerical dissipative error of (5)
is found as
ea ¼
sinð/=2Þ
/=2

1þ
X
l

dl

6
ðcos l/� 1Þ

" #
ð1� cos/Þ � sin/

X
l

cl sin l/

( )
ð13Þ
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Fig. 1. Dissipative and dispersion errors of piecewise linear reconstructions. (a) Dissipation error. (b) Dispersion error.
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and the dispersion error as
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ep ¼
sinð/=2Þ
/=2

1þ
X
l

dl

6
ðcos l/� 1Þ

" #
sin/þ ð1� cos/Þ

X
l

cl sin l/� /

( )
ð14Þ
if �sj is computed by the central divided difference scheme of (9) and �rj is by
�rj ¼
1

Dx2
X
l

dlð�ujþl � 2�uj þ �uj�lÞ. ð15Þ
Presented in Fig. 2 are the numerical dissipative and dispersion errors of (5) based on the piecewise
quadratic reconstruction of (12) with the second-, fourth-, and sixth-order central divided difference
computed �sj and �rj, labeled as Q2d, Q4d, and Q6d, respectively. Here Q stands for a piecewise Quadratic
reconstruction. It is found that compared with using a piecewise linear reconstruction with more accurate
slope, it is more effective to use a piecewise quadratic reconstruction for reduction of numerical diffusion.
The accuracy improvement achieved from using more accurate derivatives for a piecewise quadratic
reconstruction is also much larger than for a piecewise linear one. As shown in Fig. 2(b), the achieved
reduction of numerical phase error from the use of a piecewise quadratic reconstruction is even more
impressive. Different from its piecewise linear counterpart, using the higher-order accurate slope and
curvature in a piecewise quadratic reconstruction reduces the numerical phase error over the whole
frequency domain.

It is noteworthy that in the smooth regions, the famous piecewise-parabolic method (PPM) [30] reduces
to
ujþ1=2 ¼ 7
12
ð�ujþ1 þ �ujÞ � 1

12
ð�ujþ2 þ �uj�1Þ; ð16Þ
which can be derived from the piecewise quadratic reconstruction of (12) with
�sj ¼
�2�uj�1 � 3�uj þ 6�ujþ1 � �ujþ2

6Dx
; �rj ¼

�uj�1 � 2�uj þ �ujþ1

Dx2
. ð17Þ
It is clear that PPM is slightly different from the above other piecewise quadratic reconstructions using the
central difference computed slope and curvature. As a result, in the smooth regions, whereas the above other
piecewise quadratic reconstructions ultimately lead to upwind-biased discretizations of the flux derivative
ðuxÞj, PPM produces a fourth-order central difference of the flux derivative ðuxÞj
ðuxÞj ¼
�uj�2 � 8�uj�1 þ 8�ujþ1 � �ujþ2

12Dx
. ð18Þ
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Fig. 2. Dissipative and dispersion errors of piecewise quadratic reconstructions. (a) Dissipation error. (b) Dispersion error.
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Accordingly, as shown in Fig. 2(a), PPM has no numerical dissipation in the smooth regions. On the other
hand, its numerical dispersion error, as indicated in Fig. 2(b), is same as Q2d because it only enlarges the sten-
cil of Q2d by one.

2.3. Improvements over third-order polynomial interpolation

As mentioned earlier, many current Godunov-type scheme-based CFD codes follow van Leer�s MUSCL

approach [21] and attain their best accuracy by using a third-order polynomial fit of the interface values in
the smooth regions (e.g. [18–20]). However, this third-order polynomial fit is found too dissipative for simu-
lation of the vortex-dominated flows [1,3,22]. Therefore, a fifth-order polynomial fit has been investigated and
large accuracy improvement has been observed with the use of this fifth-order spatial discretization (e.g. [22–
25]).

To further explore a more effective way for accuracy improvement over the third-order polynomial fit
of the interface values, we reinterpret the above third-order polynomial interpolation as a piecewise qua-
dratic reconstruction of (12) with the second-order divided difference computed slope and curvature, i.e.,
Q2d. Besides using the more popular fifth-order polynomial fit, as discussed in the last section, there is
another way to improve the accuracy of the computed interface values over the third-order polynomial
fit or Q2d. One can keep using the piecewise quadratic reconstruction of (12) but with the more accurate
slope and curvature such as Q4d and Q6d. Fig. 3 presents the numerical dissipation and dispersion errors
of (5) based on the above third- and fifth-order polynomial fits of the interface values as well as several
piecewise quadratic reconstructions. It is found that the accuracy improvement of Q4d over Q2d is already
very close to that of the fifth-order polynomial fit over the third-order polynomial fit although those higher-
order reconstruction terms of the fifth-order polynomial interpolation are not included in (12). Further use
of Q6d even creates a larger accuracy improvement over the third-order polynomial fit than the fifth-order
polynomial fit.

It is important to note that different from Q2d, which can also be considered as a third-order polyno-
mial interpolation, neither Q4d nor Q6d is a polynomial interpolation but only a piecewise polynomial
one. The higher accuracy of Q6d over the fifth-order polynomial fit confirms the argument in numerical
analysis that a piecewise polynomial interpolation has a much better approximation property than a higher-
order polynomial interpolation [31]. Using an accurate piecewise polynomial interpolation is more effective
for the accuracy improvement than a higher-order polynomial interpolation. Here for clarity, a polynomial
interpolation is confined to a reconstruction with the same polynomial interpolation for computing the
derivatives, and an accurate piecewise polynomial interpolation is confined to a reconstruction with the
derivatives much more accurate than the reconstruction itself.
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Fig. 3. Comparison of piecewise polynomial and polynomial interpolations. (a) Dissipation error. (b) Dispersion error.
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However, one may argue that the higher accuracy of Q6d comes from its larger stencil than that of the fifth-
order polynomial fit. The accuracy of Q6d cannot compete with that of the seventh-order polynomial fit,
which uses the same stencil as Q6d. This is true. But remember that one does not need to use divided differ-
ences to compute the slope and curvature of a piecewise quadratic reconstruction, which are not accurate
enough to make a piecewise polynomial interpolation more superior than a polynomial interpolation with
the same stencil. More accurate methods such as the compact differences can be used.

Given 2l + 1 cell-averaged values of the solution around the point j, a tridiagonal central difference scheme
for the approximation of the cell-averaged values of the slope can be written in the form
a�sj�1 þ �sj þ a�sjþ1 ¼
1

Dx

X
l

clð�ujþl � �uj�lÞ ð19Þ
and for the curvature can be written in the form
b�rj�1 þ �rj þ b�rjþ1 ¼
1

Dx2
X
l

dlð�ujþl � 2�uj þ �uj�lÞ. ð20Þ
A divided difference scheme is a special case of (19) or (20) as a or b is equal to zero. Otherwise, it is called as a
compact difference scheme. If the slope �sj and the curvature �rj in a piecewise quadratic reconstruction of (12)
are computed by the above compact differences, then the numerical dissipation error of (5) is
ea ¼
sinð/=2Þ
/=2

1þ
X
l

dlðcos l/� 1Þ
6ð1þ 2b cos/Þ

" #
ð1� cos/Þ � sin/

P
lcl sin l/

1þ 2a cos/

( )
ð21Þ
and the dispersion error is
ep ¼
sinð/=2Þ
/=2

1þ
X
l

dlðcos l/� 1Þ
6ð1þ 2b cos/Þ

" #
sin/þ

P
lcl sin l/

1þ 2a cos/
ð1� cos/Þ � /

( )
. ð22Þ
As shown in Fig. 3, with a smaller or equivalent stencil, the piecewise quadratic reconstruction of (12) with the
fourth- or sixth-order central compact difference computed �sj and �rj, Q4c or Q6c with c standing for compact
differences, has much less numerical dissipation and dispersion errors than the fifth-order polynomial fit.
3. Monotonicity-preserving piecewise quadratic reconstruction

However, it is well known that any high-order linear numerical discretization would create numerical
oscillations around a discontinuity. During the last three decades, two major approaches have been devel-
oped for construction of a monotonicity-preserving high-order nonlinear scheme. One is the slope-limiting
approach like flux-corrected transport (FCT) and total variation diminishing (TVD) schemes (e.g. [32–38]),
and the other is essentially non-oscillatory (ENO) and weighted ENO (WENO) schemes (e.g. [13,16,
17,26,39–43]). The major problem of the slope-limiting approach is the loss of accuracy at local extrema
because of its TVD property. So, the approach is not suitable for simulation of vortex-dominated flows.
But this situation has changed after Huynh successfully extends the slope-limiting approach beyond the
TVD concept [44]. In [44], the lower and upper bounds are designed for the slope to make a piecewise
linear reconstruction monotonicity-preserving. The developed monotonicity-preserving constraints are less
restrictive than the TVD counterparts in that they can distinguish between a smooth local extremum and
a genuine O(1) discontinuity. As a result, the accuracy of a resulting monotonicity-preserving piecewise
linear reconstruction is comparable to the WENO scheme in [26]. In this approach, the enforcement of
monotonicity-preserving constraints on the slope of a piecewise linear reconstruction is a post-processing
step after computation of the slope. So, the extra computational cost due to implementation of monoto-
nicity-preserving constraints for compact differences is same as that for divided differences. On the other
hand, in the ENO/WENO approach, the use of compact differences for hyperbolic system of conservation
laws requires a block tridiagonal matrix inversion with pivoting to implement the characteristic decompo-
sition. The approach is computationally much more costly than its divided difference counterpart and
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Huynh�s approach. Moreover, the compact WENO scheme in [17] does not work for Woodward and Col-
ella�s interacting blast wave case [45], whereas in Huynh�s approach, compact differences are as robust as
divided differences. As shown in the above Fourier accuracy analysis, however, compared with a piecewise
quadratic reconstruction, a piecewise linear reconstruction is much less effective for accuracy improvement.
Therefore, in the following, we will discuss how to construct a monotonicity-preserving piecewise qua-
dratic reconstruction using an approach similar to Huynh�s work in [44].

Let us start with the construction of the upper bound of the slope. It is well known that a locally large
slope is the major cause of numerical oscillations. Given a high-order polynomial interpolation, there
exists an upper bound for the slope, beyond which the high-order polynomial interpolation would over-
shoot/undershoot the solution. The enforcement of this upper bound on the slope of the given interpola-
tion could make the interpolation monotonicity-preserving, but at the same time produces extra numerical
dissipation. The stricter the upper bound is, the larger the extra numerical dissipation introduced would
be. It is known that the upper bound of the slope for a piecewise linear reconstruction is min(2|D+|,2|D�|)
(e.g., [44]), where Dþ ¼ ð�ujþ1 � �ujÞ=Dx and D� ¼ ð�uj � �uj�1Þ=Dx. For a piecewise quadratic reconstruction,
on the other hand, given monotonically increasing data, the sufficient and necessary condition of local
monotonicity is
Rjðxj�1=2Þ P �uj�1;

Rjðxjþ1=2Þ 6 �ujþ1;
dRj

dx ðxj�1=2Þ P 0;
dRj

dx ðxjþ1=2Þ P 0;

8>>>><
>>>>:

ð23Þ
which gives
�12D� þ 6�sj 6 �rjDx 6 12Dþ � 6�sj;

�2�sj 6 �rjDx 6 2�sj.

(
ð24Þ
This is valid only if
�12D� þ 6�sj 6 2�sj;

�2�sj 6 12Dþ � 6�sj.

�
ð25Þ
As a result, one yields
�sj 6 minð3Dþ; 3D�Þ. ð26Þ

Similarly, for monotonically decreasing data, the sufficient and necessary condition of local monotonicity
leads to �sj P minð3Dþ; 3D�Þ. In general, the upper bound of the slope for a piecewise quadratic reconstruction
is min(3|D+|, 3|D�|). It is clear that a monotonicity-preserving piecewise quadratic reconstruction allows a lar-
ger upper bound for the slope than a piecewise linear one because its curvature term can partially offset the
effect of a large slope. As a result, the Godunov-type scheme based on a monotonicity-preserving piecewise
quadratic reconstruction is less dissipative than the one based on a monotonicity-preserving piecewise linear
reconstruction in [44].

The above result seems contradictory to the common sense that considers a higher-order polynomial inter-
polation always unfavorable to monotonicity preservation. This is because in a high-order polynomial inter-
polation, as discussed in Section 2, the reconstruction RjðxÞ is equivalent to the polynomial }j(x) used for
computing the derivatives of RjðxÞ. Given a locally large slope, while increasing the order of RjðxÞ allows a
larger upper bound for the slope of RjðxÞ, the increase of the order of }jðxÞ ¼ RjðxÞ also makes the computed
slope of RjðxÞ larger. Therefore, increasing the order of a polynomial interpolation has dual effects on the gen-
eration of numerical oscillations. After the enforcement of monotonicity-preserving constraints, however, a
higher-order piecewise polynomial interpolation actually gives a sharper representation of a discontinuity be-
cause of its larger upper bound for the slope, as shown in Fig. 4.

In fact, Fig. 4 also illustrates the basic principle behind the following construction of a monotonicity-
preserving piecewise quadratic reconstruction when the upper bound of the slope is violated.
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Fig. 4. Monotonicity-preserving piecewise polynomial interpolation of a discontinuity.
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Theorem 3.1. If j�sjj 6 j�sj�1j, then the reconstruction
RjðxÞ ¼ �uj þ �sjðx� xjÞ þ � �uj � �uj�1

Dx2
þ �sj
Dx

� �
ðx� xjÞ2 �

Dx2

12

� �
ð27Þ
is locally monotonicity-preserving in the interval [xj�1,xj]; otherwise the reconstruction
RjðxÞ ¼ �uj þ 2
�uj � �uj�1

Dx
� �sj�1

� �
ðx� xjÞ þ

�uj � �uj�1

Dx2
� �sj�1

Dx

� �
ðx� xjÞ2 �

Dx2

12

� �
ð28Þ
is locally monotonicity-preserving in the interval [xj�1,xj].

Proof 1. Without loss of generality, let us consider the case of increasing data only. The corresponding locally
monotonicity-preserving requirement is
d

dx
RjðxÞ P 0. ð29Þ
Consider the case of j�sjj 6 j�sj�1j first. From (27), one yields
d

dx
RjðxÞ ¼ �sj þ 2 � �uj � �uj�1

Dx2
þ �sj
Dx

� �
ðx� xjÞ ð30Þ
and from the condition of �sj 6 �sj�1, one yields
�uj � �uj�1

Dx
� �sj P 0. ð31Þ
Therefore, the reconstruction of (27) satisfies the requirement of (29) in the interval [xj�1,xj]. Similarly, one
can prove the reconstruction of (28) is locally monotonicity-preserving in the interval [xj�1,xj] if �sj P �sj�1. h

Based on the local conditions, this theorem provides a pair of the slope and curvature, denoted as �sL and �rL,
for constructing a monotonicity-preserving piecewise quadratic reconstruction in the interval [xj�1/2,xj] if
j�sjj P 3jD�j. The next theorem will provide their counterparts, denoted as �sR and �rR, in the interval
[xj,xj + 1/2] for j�sjj P 3jDþj.

Theorem 3.2. If j�sjj 6 j�sjþ1j, then the reconstruction
RjðxÞ ¼ �uj þ �sjðx� xjÞ þ
�ujþ1 � �uj

Dx2
� �sj
Dx

� �
ðx� xjÞ2 �

Dx2

12

� �
ð32Þ
is locally monotonicity-preserving in the interval [xj,xj+1]; otherwise the reconstruction
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RjðxÞ ¼ �uj þ 2
�ujþ1 � �uj

Dx
� �sjþ1

� �
ðx� xjÞ þ � �ujþ1 � �uj

Dx2
þ �sjþ1

Dx

� �
ðx� xjÞ2 �

Dx2

12

� �
ð33Þ
is locally monotonicity-preserving in the interval [xj,xj+1].

The proof of this theorem is similar to that of Theorem 3.1.
With the above two theorems, one can enforce the upper bound of the slope for a piecewise quadratic

reconstruction as follows:
�sL ¼ �sj; �rL ¼ �rj if j�sjj 6 3jD�j;
�sL ¼ 2D� � �sj�1; �rL ¼ 2ðD� � �sj�1Þ=Dx if j�sjj > 3jD�j

�
ð34Þ
and
�sR ¼ �sj; �rR ¼ �rj if j�sjj 6 3jDþj;
�sR ¼ 2Dþ � �sjþ1; �rL ¼ 2ð�Dþ þ �sjþ1Þ=Dx if j�sjj > 3jDþj.

(
ð35Þ
Finally,
�sj ¼ �sL; �rj ¼ �rL if j�sLj < j�sRj;
�sj ¼ �sR; �rj ¼ �rR if j�sLj P j�sRj.

�
ð36Þ
It is noteworthy that different from the ENO/WENO approach, which selects the smoothest stencil near a
discontinuity and does not allow the interpolation across the discontinuity, our above approach only shifts the
stencil by one cell according to the local smoothness and allows the interpolation across the discontinuity.
Therefore, our approach is less diffusive than the ENO/WENO approach. On the other hand, the above ap-
proach only works for the accurate �sj and �rj. In reality, however, as shown in [44], the slope and curvature
given by finite differences in Section 2 may have the wrong sign near a discontinuity. The procedure suggested
in [44] has to be used first to correct the signs of the computed slope and curvature. Furthermore, the extension
of the above approach to hyperbolic systems of conservation laws requires the characteristic decomposition.

4. Numerical results and discussion

Several carefully selected cases are presented to demonstrate the improved accuracy of a Godunov-type
scheme based on a piecewise quadratic reconstruction and the validity of the above monotonicity-preserving
constraints for a piecewise quadratic reconstruction. The Trapezoidal scheme is chosen for time discretization
although a simpler explicit scheme could be used. This is simply because there is no numerical damping in this
time discretization and an implicit scheme is suitable for a larger range of problems than an explicit scheme.
The implicit operator used is the lower–upper symmetric Gauss–Seidel (LU-SGS) scheme with the spectral
radius approximation used in a typical rotor Euler/Navier–Stokes code, TURNS [20], which also has the op-
tion of using Newton-type subiterations at each time step for reduction of the linearization and factorization
errors, and the improvement of time accuracy.

4.1. Woodward–Colella’s two interacting blast waves

Our first selected case is Woodward–Colella�s problem in [45], which involves the interaction of two
blast waves. This is a much tougher case than the more popular shock-tube problems. Many schemes like
the compact WENO scheme in [17] work well for the shock-tube problems but fail this case. So, we use this
case here to examine the validity of the above monotonicity-preserving constraints for a piecewise quadratic
reconstruction.

However, no exact solution exists for this case. The ‘‘exact’’ solution presented in Fig. 5 is actually the
numerical solution of the WENO5 scheme [26] on a fine mesh of 1600 points. Fig. 5(a) also presents the
density distributions at t = 0.038 predicted by various piecewise quadratic reconstructions on a coarser
mesh of 400 points with three subiterations at each time step. Here M in the legends stands for
Monotonicity-preserving. It is found that the present monotonicity-preserving constraints work well for
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Fig. 5. Woodward–Colella�s blast waves problem (N = 400, Dt = 0.00005, t = 0.038).
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all piecewise quadratic reconstructions. Whereas some monotonicity-preserving piecewise quadratic recon-
structions predict the value of the valley more accurately, the others give the better prediction of the right
peak value. Further presented in Fig. 5(b) is the comparison of MQ6c with the other three more popular
monotonicity-preserving reconstructions. The first two are the TVD scheme used in CFL3D [18] and
WENO5 in [26], which reduce to the third/fifth-order polynomial fits in the smooth regions, respectively.
The third one is the more popular monotonicity-preserving piecewise quadratic reconstruction, PPM [30].
It is worthy to emphasize that all the computations have been performed with Roe�s approximate Rie-
mann solver and with Trapezoidal time discretization. The only difference between various computations
is the different types of reconstruction used. As expected, the TVD scheme used in CFL3D produces the
most diffusive result, whereas the result from MQ6c is the least diffusive.

4.2. 2-D vortex convection

This is one of our major test cases. The vortex model considered is the one due to Kauffman/Scully [46] with
a core radius of rc = 0.05 and the nondimensionalized strength of Ĉ ¼ 0:2. The vortex convects over a distance
of 200rc at a streamwise Mach number of 0.5. A small Dt = 0.008333 with four subiterations is used to main-
tain the time accuracy, for which the vortex convects a distance of Dx in six steps on a coarse mesh with only
four points across the vortex core. The uniform Cartesian mesh has a total of 481 · 81 points. In this case, the
perturbation induced by the vortex is not large enough to produce a significantly nonlinear effect. So, the con-
vection is linear and the solutions should remain unchanged by convection. Any diffusion of the computed
vortex is considered from the numerical discretization. Because the peak values of the vortex-induced vertical
velocity are of most concern in practice, their decay due to numerical discretization will be used in the follow-
ing as a basic measure to examine the numerical diffusion of vorticity inherent in various Godunov-type
reconstructions.

Fig. 6 presents the decay of the normalized peak-to-peak vertical-induced velocity Dv/Dv0 with respect to
the number of core radii travelled predicted by the Godunov-type schemes based on several piecewise qua-
dratic reconstructions. It is found that with only four points across the vortex core, the use of Q4d, Q4c,
and Q6c reduces the decay of Dv/Dv0 after 200 core radii convection predicted by Q2d, Q4d, and Q4c by at
least 50%, respectively. On the other hand, Q6d and Q4c produce very similar results. Our monotonicity-
preserving constraints slightly degrade the accuracy of Q2d but introduce larger extra numerical dissipation into
those more accurate piecewise quadratic reconstructions. Whereas the reduction of the numerical diffusion of
vorticity achieved by MQ4d over MQ2d is nearly 20% for a 200 core radii convection, the further reduction
given by MQ6d or MQ4c over MQ4d is just around 2.5%. The difference between the results of MQ6c and
MQ6d is even smaller, only 0.77% further reduction whereas Q6c is able to reduce the numerical diffusion
of vorticity given by Q6d after 200 core radii convection from about 8% to 4%.
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Further presented in Fig. 7 is the decay of the normalized peak-to-peak vertical induced velocity
predicted by CFL3D, WENO5, MQ6c, and PPM, and their equivalent viscous decay of the Lamb–Oseen
vortex [47]. (The derivation of the viscous decay of the induced velocity versus the number of core radii
travelled is referred to [28].) It is found that the numerical decay produced by CFL3D after 200 core radii
convection is equivalent to the viscous decay of the Lamb–Oseen vortex at Re @ 507 with the vortex core
radius as the characteristic length. If the Reynolds number of a viscous flow is higher than 507, then the
accuracy of CFL3D is unacceptable and a more accurate scheme or/and a finer mesh are needed. The use
of WENO5, MQ6c, and PPM can raise such a critical Reynolds number to 2909, 12,261, and 3094, respec-
tively. Based on the airfoil chord if the vortex core radius is 5% of the airfoil chord, these critical Rey-
nolds numbers are equivalent to 104, 5.8 · 104, 2.45 · 105, and 6.2 · 104, respectively. It is interesting to
find that PPM has slightly less numerical diffusion for this vortex convection case than the
more advanced WENO5. This is because PPM reduces to a fourth-order central scheme in the smooth
region.

The predicted vertical-induced velocity profiles after 200 core radii convection are further shown in Fig. 8.
No numerical oscillation is found in these profiles. As expected, the peak value of the vertical-induced velocity
profile predicted by CFL3D is significantly underpredicted and the predicted vortex core is diffused from 4
points to 16 points. On the other hand, WENO5, MQ6c, and PPM yield a profile much closer to the exact
solution. WENO5 and PPM double the vortex core size after 200 core radii convection and MQ6c only
slightly increases the vortex core from 4 points to 6 points.
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Finally, Fig. 9 indicates that to achieve the accuracy of WENO5 and MQ6c for this vortex convection case,
CFL3D requires doubling and quadrupling the number of grid points, respectively. This would increase the
computational cost by 23 = 8 and 43 = 64 times if the CFL number is fixed. On the other hand, WENO5

and MQ6c only double the computational cost of CFL3D. So, a p-refinement approach is much more efficient
than a h-refinement approach for improving the simulation of vortex-dominated flows.

4.3. Shock–vortex interaction

Our last case is a shock–vortex interaction case, in which a Kauffman/Scully vortex with a core radius
of rc = 0.1 and the nondimensionalized strength of Ĉ ¼ 0:5 is imposed on the flowfield of Yee et al.�s
shock reflection problem [48]. With only four points across the vortex core, the uniform Cartesian mesh
needs 241 points in the x-direction to cover the same convection length as the last case. Moreover, in
order to achieve the same fineness ratio of the computational domain as the one in [48], 61 points are
used in the y-direction.

The computation starts with the calculation of the steady solution of Yee et al.�s shock reflection prob-
lem [48]. In these steady computations, the first-order implicit time discretization is used with a CFL num-
ber of 5 and one Newton subiteration. The predicted density contours and the pressure coefficient
distributions at y = 1.5 after 300 iterations are presented in Fig. 10. It is found that the same as CFL3D

and WENO5, MQ6c is also able to produce clean shock profiles. On the other hand, PPM still causes
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some numerical oscillations after the reflected shock. This is probably because the characteristic decompo-
sition has only been applied to WENO5 and MQ6c, whereas CFL3D and PPM work on the primitive
variables.

After obtaining the above steady solutions, the vortex with rc = 0.1 and Ĉ ¼ 0:5 is imposed on the flow-
field at (x,y) = (1,1.5) and subsequently convects in the flowfield. In these unsteady computations, we use
the Trapezoidal scheme with Dt = 0.008333, the same as the last case, but with six instead of four Newton
subiterations to achieve more clean solutions. Fig. 11 presents the predicted density contours and the pres-
sure coefficient distributions across the vortex center at the initial time step and when the vortex starts to
leave the computational domain. It is found that starting with the same vortex structure at the initial time
step, the vortex structure given by CFL3D at the later time step is the most diffused, which can be clearly
seen in both the predicted density contours and the pressure coefficient distributions across the vortex cen-
ter. On the other hand, WENO5, MQ6c, and PPM produce similar density contours. From the predicted
pressure coefficient distributions across the vortex center, however, one is still able to find that MQ6c pre-
serves the vortex structure better than WENO5 and PPM.

It is noteworthy that since CFL3D and PPM work on the primitive variables, they are computationally
more efficient. For the above steady case, CFL3D and PPM take about 19.2 and 31.7 s, respectively, on a
2.4 GHz PC. On the other hand, WENO5 and MQ6c need about 40.1 and 42.5 s, respectively, for the
same case on the same machine.



Fig. 11. Density contours and pressure coefficient distributions of shock–vortex interaction. (a) Initial time step: t = 0. (b) Vortex starts to
leave the domain: t = 3.83.
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5. Conclusions

Given the more traditional third-order polynomial fit of the interface values (i.e., a piecewise quadratic
reconstruction with the second-order divided difference computed slope and curvature) as the baseline Godu-
nov-type reconstruction, it is much more effective to use an improved third-order Godunov-type reconstruc-
tion, i.e., the same piecewise quadratic reconstruction form but with the more accurate sixth-order compact
difference computed slope and curvature, than the more popular fifth-order polynomial fit of the interface
values for reduction of numerical diffusion. A general framework has also been developed to make such a
piecewise quadratic reconstruction free of numerical oscillations. The resulting improved third-order monoto-
nicity-preserving scheme has less numerical dissipation than the more popular PPM and WENO5 schemes.
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